Answer
See below:
Work Step by Step
In the given above expression, find the values of the function for each value of\[x\].
For\[x=-3\],
\[\begin{align}
& y=\left| -3 \right|-2 \\
& =1
\end{align}\]
The point is\[\left( -3,1 \right)\].
For\[x=-2\],
\[\begin{align}
& y=\left| -2 \right|-2 \\
& =0
\end{align}\]
The point is\[\left( -2,0 \right)\].
For\[x=-1\],
\[\begin{align}
& y=\left| -1 \right|-2 \\
& =-1
\end{align}\]
The point is\[\left( -1,-1 \right)\].
For\[x=0\],
\[\begin{align}
& y=\left| 0 \right|-2 \\
& =-2
\end{align}\]
The point is \[\left( 0,-2 \right)\]
For\[x=1\],
\[\begin{align}
& y=\left| 1 \right|-2 \\
& =-1
\end{align}\]
The point is \[\left( 1,-1 \right)\]
For\[x=2\],
\[\begin{align}
& y=\left| 2 \right|-2 \\
& =0
\end{align}\]
The point is \[\left( 2,0 \right)\]
For\[x=3\],
\[\begin{align}
& y=\left| 3 \right|-2 \\
& =1
\end{align}\]
The point is \[\left( 3,1 \right)\]
Therefore, the points will be\[\left( -3,1 \right),\left( -2,0 \right),\left( -1,-1 \right),\left( 0,-2 \right),\left( 1,-1 \right),\text{ and}\left( 3,1 \right)\].
Hence, the graph of the function corresponding to the points is as shown above: