Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 7 - Algebra: Graphs, Functions, and Linear Systems - Chapter 7 Test - Page 483: 1

Answer

See below:

Work Step by Step

In the given above expression, find the values of the function for each value of\[x\]. For\[x=-3\], \[\begin{align} & y=\left| -3 \right|-2 \\ & =1 \end{align}\] The point is\[\left( -3,1 \right)\]. For\[x=-2\], \[\begin{align} & y=\left| -2 \right|-2 \\ & =0 \end{align}\] The point is\[\left( -2,0 \right)\]. For\[x=-1\], \[\begin{align} & y=\left| -1 \right|-2 \\ & =-1 \end{align}\] The point is\[\left( -1,-1 \right)\]. For\[x=0\], \[\begin{align} & y=\left| 0 \right|-2 \\ & =-2 \end{align}\] The point is \[\left( 0,-2 \right)\] For\[x=1\], \[\begin{align} & y=\left| 1 \right|-2 \\ & =-1 \end{align}\] The point is \[\left( 1,-1 \right)\] For\[x=2\], \[\begin{align} & y=\left| 2 \right|-2 \\ & =0 \end{align}\] The point is \[\left( 2,0 \right)\] For\[x=3\], \[\begin{align} & y=\left| 3 \right|-2 \\ & =1 \end{align}\] The point is \[\left( 3,1 \right)\] Therefore, the points will be\[\left( -3,1 \right),\left( -2,0 \right),\left( -1,-1 \right),\left( 0,-2 \right),\left( 1,-1 \right),\text{ and}\left( 3,1 \right)\]. Hence, the graph of the function corresponding to the points is as shown above:
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.