Answer
the ordered pair \[\left( -3,5 \right)\] is a solution of the system of equations.
Work Step by Step
Find the value of \[x\]from first equation and substitute it in the second equation as:
\[\begin{align}
& 9x+7y=8 \\
& 9x=8-7y \\
& x=\frac{8-7y}{9}
\end{align}\]
Now, substitute the above value of \[x\]in the second equation and solve for \[y\]as:
\[\begin{align}
& 8\left( \frac{8-7y}{9} \right)-9y=-69 \\
& \frac{64-56y}{9}-9y=-69 \\
& 64-56y-81y=-621 \\
& -137y=-685
\end{align}\]
Value of \[y\]is:
\[\begin{align}
& -137y=-685 \\
& y=\frac{-685}{-137} \\
& y=5
\end{align}\]
Now, substitute the value of \[y\]in first equation to get the value of \[x\]as:
\[\begin{align}
& 9x+7\left( 5 \right)=8 \\
& 9x+35=8 \\
& 9x=-27 \\
& x=-3
\end{align}\]
Hence, the ordered pair \[\left( -3,5 \right)\] is a solution of the system of equations.