Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 5 - Number Theory and the Real Number System - 5.7 Arithmetic and Geometric Sequences - Exercise Set 5.7 - Page 330: 118

Answer

The sequence is geometric and the sum of its first ten terms is $3069$.

Work Step by Step

The terms have a common ratio of $2$ so the sequence is geometric with $r=2$ and $a_1=3$. The sum $S_n$ of the first $n$ terms of a geometric sequence is given by the formula: $$S_n=\frac{a_1(1-r^n)}{1-r}$$ The given sequence has $a_1=3$ and $r=2$. However, the value of $a_{10}$ (the tenth term) is not yet known. Solve for $a_{10}$ using the formula $a_n=a_1\cdot r^{n-1}$ to obtain: \begin{align*} a_{10}&=3 \cdot 2^{10-1}\\ &=3\cdot 2^9\\ &=3\cdot 512\\ &=1536\end{align*} Use the formula for the sum of the first $n$ terms to find the sum of the first $10$ terms (use $n=10$) to obtain: \begin{align*} S_{10}&=\frac{a_1(1-r^n)}{1-r}\\\\ &=\frac{3(1-2^{10})}{1-2}\\\\ &=\frac{3(1-1024)}{-1}\\\\ &=\frac{3(-1023)}{-1}\\\\ &=3069 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.