Answer
shown below
Work Step by Step
(a)
Find \[\left[ \begin{matrix}
2 & 3 \\
4 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 1 \\
5 & 6 \\
\end{matrix} \right]\]as,
\[\begin{align}
& \left[ \begin{matrix}
2 & 3 \\
4 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 1 \\
5 & 6 \\
\end{matrix} \right]=\left[ \begin{matrix}
2\cdot 0+3\cdot 5 & 2\cdot 1+3\cdot 6 \\
4\cdot 0+7\cdot 5 & 4\cdot 1+7\cdot 6 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0+15 & 2+18 \\
0+35 & 4+42 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
15 & 20 \\
35 & 46 \\
\end{matrix} \right]
\end{align}\]
Hence, \[\left[ \begin{matrix}
2 & 3 \\
4 & 7 \\
\end{matrix} \right]\times \left[ \begin{matrix}
0 & 1 \\
5 & 6 \\
\end{matrix} \right]=\left[ \begin{matrix}
15 & 20 \\
35 & 46 \\
\end{matrix} \right]\].
(b)
Find \[\left[ \begin{matrix}
0 & 1 \\
5 & 6 \\
\end{matrix} \right]\times \left[ \begin{matrix}
2 & 3 \\
4 & 7 \\
\end{matrix} \right]\]as,
\[\begin{align}
& \left[ \begin{matrix}
0 & 1 \\
5 & 6 \\
\end{matrix} \right]\times \left[ \begin{matrix}
2 & 3 \\
4 & 7 \\
\end{matrix} \right]=\left[ \begin{matrix}
0\cdot 2+1\cdot 4 & 0\cdot 3+1\cdot 7 \\
5\cdot 2+6\cdot 4 & 5\cdot 3+6\cdot 7 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
0+4 & 0+7 \\
10+24 & 15+42 \\
\end{matrix} \right] \\
& =\left[ \begin{matrix}
4 & 7 \\
34 & 57 \\
\end{matrix} \right]
\end{align}\]
Hence, \[\left[ \begin{matrix}
0 & 1 \\
5 & 6 \\
\end{matrix} \right]\times \left[ \begin{matrix}
2 & 3 \\
4 & 7 \\
\end{matrix} \right]=\left[ \begin{matrix}
4 & 7 \\
34 & 57 \\
\end{matrix} \right]\].
(c)
The row of first set is multiplied with the column of second set. Thus, the row of first is distributed over column of second.
Hence, distributive property is used in above multiplication.