Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 2 - Set Theory - Chapter 2 Test - Page 111: 20

Answer

Left-hand side (LHS) of the equation is as follows: \[\begin{align} & \text{LHS}=A'\cap \left( B\cup C \right) \\ & =\left\{ \text{III,VI,VII,VIII} \right\}\cap \left( \left\{ \text{II,III,V,VI} \right\}\cup \left\{ \text{IV,V,VI,VII} \right\} \right) \\ & =\left\{ \text{III,VI,VII,VIII} \right\}\cap \left\{ \text{II,III,IV,V,VI,VII} \right\} \\ & =\left\{ \text{III,VI,VII} \right\} \end{align}\] Now, right-hand side (RHS) of the equation is as follows: \[\begin{align} & \text{RHS}=\left( A'\cap B \right)\cup \left( A'\cap C \right) \\ & =\left[ \left\{ \text{III,VI,VII,VIII} \right\}\cap \left\{ \text{II,III,V,VI} \right\} \right]\cup \left[ \left\{ \text{III,VI,VII,VIII} \right\}\cap \left\{ \text{IV,V,VI,VII} \right\} \right] \\ & =\left\{ \text{III,VI} \right\}\cup \left\{ \text{VI,VII} \right\} \\ & =\left\{ \text{III,VI,VII} \right\} \end{align}\] Since, the LHS of the equation is equal to RHS. Thus, \[A'\cap \left( B\cup C \right)=\left( A'\cap B \right)\cap \left( A'\cap C \right)\]is a theorem. Hence, \[A'\cap \left( B\cup C \right)=\left( A'\cap B \right)\cap \left( A'\cap C \right)\]is a theorem.

Work Step by Step

.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.