Thinking Mathematically (6th Edition)

Published by Pearson
ISBN 10: 0321867327
ISBN 13: 978-0-32186-732-2

Chapter 2 - Set Theory - 2.4 Set Operations and Venn Diagrams with Three Sets - Exercise Set 2.4 - Page 93: 70

Answer

given below

Work Step by Step

(a) To find the set \[\left( A\cup B \right)'\cap C\], First perform the operation inside parenthesis: Now, compute \[\left( A\cup B \right)'\] Since, \[\begin{align} & A\cup B=\left\{ 3 \right\}\cup \left\{ 1,2 \right\} \\ & =\left\{ 1,2,3 \right\} \end{align}\] The complement of set \[A\cup B\]containing all the elements of U which are not in\[A\cup B\]. So, set \[\left( A\cup B \right)'\]is: \[\begin{align} & \left( A\cup B \right)'=\left\{ 1,2,3 \right\}' \\ & =\left\{ 4,5,6 \right\} \end{align}\] So, the intersection of set \[\left( A\cup B \right)'\]and C is: \[\begin{align} & \left( A\cup B \right)'\cap C=\left\{ 4,5,6 \right\}\cap \left\{ 2,4 \right\} \\ & =\left\{ \text{4} \right\} \end{align}\] Now, to find the set \[A'\cap \left( B'\cap C \right)\] First perform operation inside parenthesis: So, for this first compute\[B'\], \[\begin{align} & B'=\left\{ 1,2 \right\}' \\ & =\left\{ 3,4,5,6 \right\} \end{align}\] Then, intersection of the set \[B'\]and set C: \[\begin{align} & B'\cap C=\left\{ 3,4,5,6 \right\}\cap \left\{ 2,4 \right\} \\ & =\left\{ \text{4} \right\} \end{align}\] Now, \[A'\]is the set which contain all the elements of U except elements of A \[\begin{align} & A'=\left\{ 3 \right\}' \\ & =\left\{ 1,2,4,5,6 \right\} \end{align}\] Their intersection is: \[\begin{align} & A'\cap \left( B'\cap C \right)=\left\{ 1,2,4,5,6 \right\}\cap \left\{ 4 \right\} \\ & =\left\{ 4 \right\} \end{align}\] The set \[\left( A\cup B \right)'\cap C=\left\{ 4 \right\}\]and\[A'\cap \left( B'\cap C \right)=\left\{ 4 \right\}\] (b) To find the set \[\left( A\cup B \right)'\cap C\], First perform the operation inside parenthesis: Now, compute \[\left( A\cup B \right)'\] Since, \[\begin{align} & A\cup B=\left\{ \text{d,f,g,h} \right\}\cup \left\{ \text{a,c,f,h} \right\} \\ & =\left\{ \text{a,c,d,f,g,h} \right\} \end{align}\] The complement of set \[A\cup B\]containing all the elements of U which are not in\[A\cup B\]. So, set \[\left( A\cup B \right)'\]is: \[\begin{align} & \left( A\cup B \right)'=\left\{ \text{a,c,d,f,g,h} \right\}' \\ & =\left\{ \text{b,e} \right\} \end{align}\] So, the intersection of set \[\left( A\cup B \right)'\]and C is: \[\begin{align} & \left( A\cup B \right)'\cap C=\left\{ \text{b,e} \right\}\cap \left\{ \text{c,e,g,h} \right\} \\ & =\left\{ \text{e} \right\} \end{align}\] Now, to find the set \[A'\cap \left( B'\cap C \right)\] First perform operation inside parenthesis: So, for this first compute\[B'\], \[\begin{align} & B'=\left\{ \text{a,c,f,h} \right\}' \\ & =\left\{ \text{b,d,e,g} \right\} \end{align}\] Then, intersection of the set \[B'\]and set C: \[\begin{align} & B'\cap C=\left\{ \text{b,d,e,g} \right\}\cap \left\{ \text{c,e,g,h} \right\} \\ & =\left\{ \text{e,g} \right\} \end{align}\] Now, \[A'\]is the set which contain all the elements of U except elements of A \[\begin{align} & A'=\left\{ \text{d,f,g,h} \right\}' \\ & =\left\{ \text{a,b,c,e} \right\} \end{align}\] Their intersection is: \[\begin{align} & A'\cap \left( B'\cap C \right)=\left\{ \text{a,b,c,e} \right\}\cap \left\{ \text{e,g} \right\} \\ & =\left\{ \text{e} \right\} \end{align}\] The set \[\left( A\cup B \right)'\cap C=\left\{ \text{e} \right\}\]and\[A'\cap \left( B'\cap C \right)\text{=}\left\{ \text{e} \right\}\] (c) Inductive reasoning is the process of arriving at a general conclusion based on observations of specific examples. So, we consider examples given in part (a)and part (b). In part (a), observe that set\[\left( A\cup B \right)'\cap C=\left\{ \text{4} \right\}\]and set\[A'\cap \left( B'\cap C \right)=\left\{ 4 \right\}\] So, they are equal. Also, in part (b), set \[\left( A\cup B \right)'\cap C=\left\{ \text{e} \right\}\]and\[A'\cap \left( B'\cap C \right)=\left\{ \text{e} \right\}\]. So, they are equal. Generalize the concept from the above two observations that for any set A, B and C. \[\left( A\cup B \right)'\cap C=A'\cap \left( B'\cap C \right)\]. For any set A, B and C:\[\left( A\cup B \right)'\cap C=A'\cap \left( B'\cap C \right)\]. (d) Deductive reasoning is the process of proving a specific conclusion from one or more general statements. A conclusion that is proved to be true by deductive reasoning is called a theorem. Now, to prove \[\left( A\cup B \right)'\cap C=A'\cap \left( B'\cap C \right)\] Consider a Venn diagram of set A, B, C and universal set U. To find the region which represent the set \[\left( A\cup B \right)'\cap C\]in the above Venn diagram, First perform the operation inside parenthesis: To find the set \[\left( A\cup B \right)'\cap C\], First perform the operation inside parenthesis: Now, compute \[\left( A\cup B \right)'\] Since, set A is represented by regions I, II, III and IV. Set B is represented by regions II, III, V and VI. Set C is represented by regions IV, V, VI and VII. So, \[A\cup B\]is represented by regions I, II, III, IV, V and VI The complement of set \[A\cup B\]containing all the elements of Uthat are not in\[A\cup B\]. So, set \[\left( A\cup B \right)'\]is represented by regions VII and VIII. So, the intersection of set \[\left( A\cup B \right)'\]and C, That is, the set \[\left( A\cup B \right)'\cap C\]is represented by region VII only. Now, to find the set \[A'\cap \left( B'\cap C \right)\] First perform operation inside parenthesis: So, for this first compute\[B'\], The complement of set Bcontaining all the elements of Uthose are not in B. So \[B'\]is represented by the regions I, IV, VII and VIII. Then, intersection of the set \[B'\]and set C. That is, the set \[B'\cap C\]is represented by the regions IV and VII. Now, \[A'\]is the set which contain all the elements of U except elements of A So,\[A'\]is represented by regions III, VI, VII and VIII. Their intersection\[A'\cap \left( B'\cap C \right)\] is represented by VII only. Hence,\[\left( A\cup B \right)'\cap C=A'\cap \left( B'\cap C \right)\]for any set A, B and C. So, it is a theorem \[\left( A\cup B \right)'\cap C=A'\cap \left( B'\cap C \right)\]for any set A, B and C. Hence, it is a theorem.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.