Answer
(a) $\frac{23}{24}$
(b) $\frac{8}{15}$
(c) $\frac{43}{48}$
(d) $\frac{4}{21}$
Work Step by Step
We add or subtract the given fractions:
(a)
$\displaystyle \frac{5}{8}+\frac{1}{3}$
We see that the Lowest Common Denominator is 24:
$\displaystyle =\frac{15}{24}+\frac{8}{24}$
$\displaystyle =\frac{15+8}{24}$
$\displaystyle =\frac{23}{24}$
(b)
$\displaystyle \frac{19}{20}-\frac{5}{12}$
We see that the Lowest Common Denominator is 60:
$\displaystyle =\frac{57}{60}-\frac{25}{60}$
$\displaystyle =\frac{57-25}{60}$
$\displaystyle =\frac{32}{60}$
$\displaystyle =\frac{8}{15}$
(c)
$\displaystyle \frac{7}{12}+\frac{3}{16}+\frac{3}{24}$
We see that the Lowest Common Denominator is 48:
$\displaystyle =\frac{28}{48}+\frac{9}{48}+\frac{6}{48}$
$\displaystyle =\frac{43}{48}$
(d)
$\displaystyle \frac{6}{7}-\frac{2}{3}$
We see that the Lowest Common Denominator is 21:
$\displaystyle =\frac{18}{21}-\frac{14}{21}$
$\displaystyle =\frac{18-14}{21}$
$\displaystyle =\frac{4}{21}$