Answer
$\frac{8}{12}$
Work Step by Step
In order to determine which fraction is equivalent to $\frac{2}{3}$, we must determine which fraction has a numerator of 8 when rewritten with a denominator of 12.
1. $\frac{7\times(\frac{12}{8})}{8\times(\frac{12}{8})}=\frac{\frac{84}{8}}{12}\ne\frac{2}{3}$
2. $\frac{3\times3}{4\times3}=\frac{9}{12}\ne\frac{2}{3}$
3. $\frac{12\times(\frac{12}{16})}{16\times(\frac{12}{16})}=\frac{\frac{144}{16}}{12}\ne\frac{2}{3}$
4. $\frac{8\times(\frac{1}{4})}{12\times(\frac{1}{4})}=\frac{2}{3}$