Answer
The two ranches have equal areas.
Work Step by Step
RECALL:
The area $A$ of a rectangle is given by the formula
$A= l \times w$
where $l$=length and $w$=width.
Solve for the area of each ranch using the formula above to obtain:
$\bf \text{Rocking Horse Ranch}$:
$\require{cancel}
A=\dfrac{3}{4} \times \dfrac{2}{3}
\\A= \dfrac{\cancel{3}}{\cancel{4}2} \times \dfrac{\cancel{2}}{\cancel{3}}
\\A=\dfrac{1}{2} \text{ square miles}$
$\bf \text{Silver Spur Ranch}$:
$\require{cancel}
A=\dfrac{5}{8} \times \dfrac{4}{5}
\\A= \dfrac{\cancel{5}}{\cancel{8}2} \times \dfrac{\cancel{4}}{\cancel{5}}
\\A=\dfrac{1}{2} \text{ square miles}$
The ranches have the same area.