Geometry: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281159
ISBN 13: 978-0-13328-115-6

Chapter 5 - Relationships Within Triangles - 5-3 Bisectors in Triangles - Practice and Problem-Solving Exercises - Page 307: 39

Answer

The midpoint of $\overline{AB}$ is $(3, 8)$.

Work Step by Step

The midpoint of $\overline{AB}$ can be found using the following formula: $M = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$ The points we are given are $(3, 0)$ and $(3, 16)$. Let's plug these points into the formula: $M = (\frac{3 + 3}{2}, \frac{0 + 16}{2})$ Use addition to simplify: $M = (\frac{6}{2}, \frac{16}{2})$ $M = (3, 8)$ The midpoint of $\overline{AB}$ is $(3, 8)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.