Answer
m$\angle 1$ = $122^{\circ}$
m$\angle 2=58^{\circ}$
m$\angle 5= 72^{\circ}$
Work Step by Step
m$\angle 1$= m$\angle 3+m\angle 4$
m$\angle 1$ = $ 50^{\circ}+72^{\circ}$
m$\angle 1$ = $122^{\circ}$
m$\angle 2=180^{\circ}-m\angle 1$
m$\angle 2=180^{\circ}-122^{\circ}$
m$\angle 2=58^{\circ}$
m$\angle 5 = m\angle 4$ alternate interior angles
m$\angle 5= 72^{\circ}$