Answer
$m\angle{ACD}$ = 93$^{\circ}$
Work Step by Step
1. Construct a line through point C such that it is parallel to line AB and line DE. Name a point above point C (here, I will use X).
2. Alternate interior angles are congruent. Therefore, $\angle{BAC}\;\cong\;\angle{ACX}$ and $\angle{CDE}\;\cong\;\angle{DCX}$.
3. Congruent angles have equivalent measures. Therefore, $m\angle{BAC}\;=\;m\angle{ACX}$ and $m\angle{CDE}\;=\;m\angle{DCX}$.
4. We are given that $m\angle{BAC}\;+\;m\angle{CDE}\;=\;93^{\circ}$. By substitution, $m\angle{ACX}\;+\;m\angle{DCX}\;=\;93^{\circ}$.
5. $m\angle{ACX}\;+\;m\angle{DCX}$ also equals $m\angle{ACD}$.
6. Therefore, $m\angle{ACD}=93^{\circ}$.