Answer
PROOF
Statements | Reasons
1.) $\overline{CE}$ $\parallel$ $\overline{DF}$; transversal $\overline{AB}$ | 1.) Given
2.) $\angle ACE$ is congruent to $\angle ADF$ | 2.) If two $\parallel$ lines are cut by a transversal, then the corresponding $\angle$s are congruent
3.) $\overline{CX}$ bisects $\angle ACE$; $\overline{DE}$ bisects $\angle CDF$ | 3.) Given
4.) $\angle1$ is congruent to $\angle3$ | 4.) If two $\angle$s are congruent, then their bisectors separate these $\angle$s into four congruent $\angle$s
Work Step by Step
PROOF
Statements | Reasons
1.) $\overline{CE}$ $\parallel$ $\overline{DF}$; transversal $\overline{AB}$ | 1.) Given
2.) $\angle ACE$ is congruent to $\angle ADF$ | 2.) If two $\parallel$ lines are cut by a transversal, then the corresponding $\angle$s are congruent
3.) $\overline{CX}$ bisects $\angle ACE$; $\overline{DE}$ bisects $\angle CDF$ | 3.) Given
4.) $\angle1$ is congruent to $\angle3$ | 4.) If two $\angle$s are congruent, then their bisectors separate these $\angle$s into four congruent $\angle$s