Answer
$V = 48~in^3$
Work Step by Step
We can find the length $L$ of each triangular section:
$L^2 = (\sqrt{34})^2-(3^2)$
$L = \sqrt{(\sqrt{34})^2-(3^2)}$
$L = \sqrt{34-9}$
$L = 5~in$
We can find the altitude when each triangular section is folded up:
$altitude = \sqrt{(5~in)^2-(3~in)^2} = 4~in$
We can find the total volume of the pyramid:
$V = \frac{1}{3}~(base~area)(altitude)$
$V = \frac{1}{3}~(36~in^2)(4~in)$
$V = 48~in^3$