Answer
$\triangle ABC \cong \triangle FED$
$\triangle ACB \cong \triangle FDE$
$\triangle BAC \cong \triangle EFD$
$\triangle BCA \cong \triangle EDF$
$\triangle CAB \cong \triangle DFE$
$\triangle CBA \cong \triangle DEF$
Work Step by Step
$\angle A = \angle F$
$\angle B = \angle E$
$\angle C = \angle D$
We can express the congruence of these two triangles with six different statements:
$\triangle ABC \cong \triangle FED$
$\triangle ACB \cong \triangle FDE$
$\triangle BAC \cong \triangle EFD$
$\triangle BCA \cong \triangle EDF$
$\triangle CAB \cong \triangle DFE$
$\triangle CBA \cong \triangle DEF$