Answer
$W(t)=\frac{C}{t}$
Work Step by Step
We will use Abel's formula to find wronskian
${y}''''+\frac{t}{t^2}{y}'''+\frac{1}{t^2}{y}'-\frac{4}{t^2}y=0\\\\$
$p_{1}(x)=\frac{t}{t^2}\;=\;\frac{1}{t}\;\;\;\;$ coefficient of ${y}'''\\\\$
$W(t)= Ce^{-\int p_{1}(x)dx}\;=\;Ce^{-\int (\frac{1}{t})dx}\;=Ce^{-ln|t|}\;=Ce^{ln\frac{1}{t}}\\\\$
$W(t)=\;C.\frac{1}{t}\;=\;\frac{C}{t}$