Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.3 Complex Roots of the Characteristic Equation - Problems - Page 165: 34

Answer

$$ t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0, \quad t>0 $$ Let $ x = \ln t$ . Then we have $$ \frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{1}{t} \frac{d y}{d x} $$ $$ \frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{1}{t} \frac{d y}{d x}\right)=\frac{-1}{t^{2}} \frac{d y}{d x}+\frac{1}{t} \frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{1}{t^{2}}\left(-\frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}\right) $$ So if we use $x$ instead of $t$ as the variable, the equation (with unknown $y $ and variable $ x$) reads $$ \frac{d^{2} y}{d x^{2}}+ (\alpha -1)\frac{d y}{d x}+ \beta y=0, $$

Work Step by Step

$$ t^{2} \frac{d^{2} y}{d t^{2}}+\alpha t \frac{d y}{d t}+\beta y=0, \quad t>0 \quad (1) $$ Let $ x = \ln t$ . Then we have $$ \frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\frac{1}{t} \frac{d y}{d x} $$ $$ \frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{1}{t} \frac{d y}{d x}\right)=\frac{-1}{t^{2}} \frac{d y}{d x}+\frac{1}{t} \frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{1}{t^{2}}\left(-\frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}\right) $$ So if we use $x$ instead of $t$ as the variable, the equation (with unknown $y $ and variable $ x$) reads $$ \frac{d^{2} y}{d x^{2}}+ (\alpha -1)\frac{d y}{d x}+ \beta y=0, \quad (2) $$ Observe that Eq. (2) has constant coefficients. If $ y_{1}(x) $ and $y_{2}(x) $ form a fundamental set of solutions of Eq. (2), then $ y_{1}( \ln t) $ and $ y_{2}( \ln t) $ form a fundamental set of solutions of Eq. (1).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.