Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.1 Homogenous Equations with Constant Coefficients - Problems - Page 145: 28

Answer

a) For 2 real distinct negative roots, $b^2>4ac$ and $|\sqrt{b^2-4ac}|0$. b) For 2 real distinct roots with opposite signs, $b^2>4ac$ and $b-\sqrt{b^2-4ac}=-(b+\sqrt{b^2-4ac})\Rightarrow{b}=0,\quad{a}<0,\quad{c}>0\quad{or}\quad a<0,\quad{c}>0$ c) For 2 real distinct positive roots, $b^2>4ac$ and $|\sqrt{b^2-4ac}|$

Work Step by Step

$$ay''+by'+cy=d$$Let $y-e^{\lambda{x}}$ so that $(\ln{y})'=\lambda$. $a{\lambda}^2+b{\lambda}+c=0$ ($\because$ equilibrium solution causes LHS=0) $$\lambda_{1,2}=\frac{-b\pm{\sqrt{b^2-4ac}}}{2a}$$ As with root analysis in quadratic equations, we will aim to deduce conditions in a, b and c by studying the discriminant $D=b^2-4ac$. For 2 real distinct negative roots, $b^2>4ac$ and $|\sqrt{b^2-4ac}|0$. For 2 real distinct roots with opposite signs, $b^2>4ac$ and $b-\sqrt{b^2-4ac}=-(b+\sqrt{b^2-4ac})\Rightarrow{b}=0,\quad{a}<0,\quad{c}>0\quad{or}\quad a<0,\quad{c}>0$ For 2 real distinct positive roots, $b^2>4ac$ and $|\sqrt{b^2-4ac}|$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.