University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.2 - Integrals of Vector Functions; Projectile Motion - Exercises - Page 655: 11

Answer

$r=(-\dfrac{t^{2}}{2}+1) {i}+(-\dfrac{t^{2}}{2}+2) {j}+(-\dfrac{t^{2}}{2}+3) {k}$

Work Step by Step

Given: $ \dfrac{d r}{d t} =-t{i}-t {j}-t {k}$ and $r(0) =i+2 j+3 {k} $ $r=\int(-t {i}-t {j}-t {k}) d t \\ =-\dfrac{t^{2}}{2} {i}-\dfrac{t^{2}}{2} {j}-\dfrac{t^{2}}{2} {k}+C$ Since $r(0) =i+2j+3k$, then $r(0)=0 {i}-0 j-0k+C$ or, $={i}+2 {j}+3 {k} $ or, $C=i+2 j+3 k$ Hence $r=(-\dfrac{t^{2}}{2}+1) {i}+(-\dfrac{t^{2}}{2}+2) {j}+(-\dfrac{t^{2}}{2}+3) {k}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.