University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.4 - The Cross Product - Exercises - Page 623: 21

Answer

$({\bf u}\times{\bf v}) \cdot{\bf w}= ({\bf v}\times{\bf w}) \cdot {\bf u} = -7$ (the equality is true) $V=7$

Work Step by Step

${\bf u}\times{\bf v}=({\bf 2i+j})\times({\bf 2i-j+k})=\left|\begin{array}{lll} {\bf i} & {\bf j} & {\bf k}\\ 2 & 1 & 0\\ 2 & -1 & 1 \end{array}\right|$ $=(1-0){\bf i}-(2-0){\bf j}+(-2-2){\bf k}= {\bf i} -2{\bf j} -4{\bf k}$ $=\langle 1, -2, -4 \rangle$ ${\bf w}={\bf i+2k} = \langle 1, 0, 2 \rangle$ $({\bf u}\times{\bf v}) \cdot {\bf w}=1(1)-2(0)-4(2)= -7$ ${\bf v}\times{\bf w}=({\bf 2i-j+k})\times({\bf i+2k})=\left|\begin{array}{lll} {\bf i} & {\bf j} & {\bf k}\\ 2 & -1 & 1\\ 1 & 0 & 2 \end{array}\right|$ $=(-2-0){\bf i}-(4-1){\bf j}+(0+1){\bf k}= -2{\bf i} -3{\bf j}+{\bf k}$ $=\langle-2, -3, 1 \rangle$ ${\bf u}= \langle 2, 1, 0 \rangle$ $({\bf v}\times{\bf w}) \cdot {\bf u}=-2(2)-3(1)+1(0)= -7$ Thus, $({\bf u}\times{\bf v}) \cdot{\bf w}= ({\bf v}\times{\bf w}) \cdot {\bf u} = -7.$ so the volume of the parallelepiped determined by the three vectors is $V=|({\bf u}\times{\bf v}) \cdot {\bf w}|=7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.