University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.6 - Conics in Polar Coordinates - Exercises - Page 592: 48

Answer

$x-\sqrt{3}y=4$

Work Step by Step

Apply additive identity for cosine $r\displaystyle \cos(\theta+\frac{\pi}{3})=r(\cos\theta\cos\frac{\pi}{3}-\sin\theta\sin\frac{\pi}{3})$ $\displaystyle \qquad =\frac{1}{2}r\cos\theta-\frac{\sqrt{3}}{2}r\sin\theta$ Apply the conversion formula $(x,y)=(r\cos\theta,r\sin\theta)$ $r\displaystyle \cos(\theta+\frac{\pi}{3})=\frac{1}{2}x-\frac{\sqrt{3}}{2}y$ So the line, in Cartesian coordinates, is $\displaystyle \frac{1}{2}x-\frac{\sqrt{3}}{2}y=2 \qquad/\times(2)$ $x-\sqrt{3}y=4$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.