Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 456: 63

Answer

$${x^n}\sin x - n\int {{x^{n - 1}}\sin xdx} $$

Work Step by Step

$$\eqalign{ & \int {{x^n}\cos x} dx \cr & {\text{Using integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}\,\,\,\,\,u = {x^n},\,\,\,\,\,\,\,du = n{x^{n - 1}}dx \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,dv = \cos xdx,\,\,\,\,\,\,\,v = \sin x \cr & \cr & {\text{Integration by parts formula }}\int {udv} = uv - \int {vdu.{\text{ T}}} {\text{hen}}{\text{,}} \cr & \int {udv} = uv - \int {vdu} \,\,\,\, \cr & \to \,\,\,\,\int {{x^n}\cos x} dx = \left( {{x^n}} \right)\left( {\sin x} \right) - \int {\left( {\sin x} \right)\left( {n{x^{x - 1}}dx} \right)} \cr & \cr & {\text{simplifying}} \cr & \,\,\,\int {{x^n}\cos x} dx = {x^n}\sin x - \int {n{x^{n - 1}}\sin xdx} \cr & \,\,\,\int {{x^n}\cos x} dx = {x^n}\sin x - n\int {{x^{n - 1}}\sin xdx} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.