Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.1 - Using Basic Integration Formulas - Exercises 8.1 - Page 449: 36

Answer

$$\frac{1}{2}{\sec ^{ - 1}}\left| {2x + 1} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\left( {2x + 1} \right)\sqrt {4x + 4{x^2}} }}} \cr & {\text{complete the square for }}4x + 4{x^2} \cr & 4x + 4{x^2} = 4{x^2} + 4x + 1 - 1 \cr & 4x + 4{x^2} = {\left( {2x + 1} \right)^2} - 1 \cr & {\text{then}}{\text{,}} \cr & \int {\frac{{dx}}{{\left( {2x + 1} \right)\sqrt {4x + 4{x^2}} }}} = \int {\frac{{dx}}{{\left( {2x + 1} \right)\sqrt {{{\left( {2x + 1} \right)}^2} - 1} }}} \cr & {\text{integrate by the substitution method}} \cr & {\text{set }}u = 2x + 1{\text{ then }}du = 2dx \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{dx}}{{\left( {2x + 1} \right)\sqrt {{{\left( {2x + 1} \right)}^2} - 1} }}} = \int {\frac{{du/2}}{{u\sqrt {{u^2} - 1} }}} \cr & {\text{integrate by using the formula }}\int {\frac{{du}}{{u\sqrt {{u^2} - {a^2}} }} = \frac{1}{a}{{\sec }^{ - 1}}\left| {\frac{u}{a}} \right| + C},.{\text{ }}a = 1 \cr & \frac{1}{2}\int {\frac{{du}}{{u\sqrt {{u^2} - {7^2}} }}} = \frac{1}{2}\left( {\frac{1}{1}{{\sec }^{ - 1}}\left| {\frac{u}{1}} \right|} \right) + C \cr & = \frac{1}{2}{\sec ^{ - 1}}\left| u \right| + C \cr & {\text{replace }}2x + 1{\text{ for }}u \cr & = \frac{1}{2}{\sec ^{ - 1}}\left| {2x + 1} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.