Answer
$400$
Work Step by Step
Let $k$ be a constant which defines a natural length with limits $0$ to $3$.
This means that $\int_0^3 kx dx=1800$
Also, $\int_0^3 kx dx=1800$
Use formula: $\int x^n=\dfrac{x^{n+1}}{n+1}+C$
Then $k[\dfrac{x^2}{2}]_0^3 =1800$
or, $k (\dfrac{9}{2}-0) =1800$
Hence, $k=\dfrac{(1800)(2)}{9}=400$