Answer
$\frac{9x}{280}$
Work Step by Step
$Ax$=$\frac{\pi}{4}(diameter)^2$=$\frac{\pi}{4}(\sqrt x-x^2)^2$
=$\frac{x}{4}(x-2\sqrt x \ x^2+x^4); a=0, b=1$
$V$=$\int^b_aA(x) \ dx$=$\frac{\pi}{4}\int^1_0[x-2x^\frac{5}{2}+x^4] \ dx$
=$\frac{\pi}{4}[\frac{x^2}{2}-\frac{4}{7}x^\frac{7}{2}+\frac{x^5}{5}$
=$\frac{\pi}{4}(\frac{1}{2}-\frac{4}{7}+\frac{1}{5})$
$\frac{\pi}{4.70}(35-40+14)$=$\frac{9\pi}{280}$