Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 5: Integrals - Section 5.3 - The Definite Integral - Exercises 5.3 - Page 277: 87

Answer

$U-L \lt \epsilon(b-a)$

Work Step by Step

Let us consider $U-L=\Sigma_{i=1}^n \triangle x_i \cdot M_i-\Sigma_{i=1}^n \triangle x_i \cdot m_i $ and $U-L=\Sigma_{i=1}^n ( M_i- x_i) \cdot \triangle x_i \lt \Sigma_{i=1}^n \epsilon \cdot \triangle x_i $; (for $i=1,2,3,...n)$ Since, $\Sigma_{i=1}^n \epsilon \cdot \triangle x_i=(\epsilon) \cdot \Sigma_{i=1}^n \triangle x_i=\epsilon \cdot (b-a)$ Then, we get $U-L \lt \epsilon (b-a)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.