Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Section 3.3 Differentiation Rules - Exercises 3.3 - Page 127: 66

Answer

$\frac{dA}{dq}=-\frac{km}{q^2}+\frac{h}{2}$ $\frac{d^2A}{dq^2}=\frac{2km}{q^3}$

Work Step by Step

Step 1. Given $A(q)=\frac{km}{q}+cm+\frac{hq}{2}=kmq^{-1}+cm+\frac{h}{2}q$, using the Power Rule for negative integers given in Exercise 64, we have $\frac{dA}{dq}=-kmq^{-2}+0+\frac{h}{2}=-kmq^{-2}+\frac{h}{2}=-\frac{km}{q^2}+\frac{h}{2}$ Step 2. : $\frac{d^2A}{dq^2}=2kmq^{-3}+0=\frac{2km}{q^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.