Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.7 - Stoke's Theorem - Exercises 16.7 - Page 1013: 1

Answer

$4\pi$

Work Step by Step

$F(r(t)) \cdot \dfrac{dr}{dt}=\lt \cos (t), 2 \sin (t) \gt \cdot \lt -\sin (t),2 \cos (t) ,0 \gt \\ \implies F(r(t)) \cdot \dfrac{dr}{dt}=(4) \cos ^2 t-\sin (t) \cos^2 (t)$ Then, we have $\implies \int _C F(r(t)) \cdot dr =\int _0^{2\pi} 4 \cos ^2 t-\sin t \cos^2 t dt$ This implies that $(\sin 4\pi-\sin 0) +2 (2 \pi-0)+\dfrac{1}{3} [\cos ^3 (2 \pi)-\cos^3 (0)=(\sin 4\pi-0 +4 \pi+\dfrac{1}{3} [\cos ^3 (2 \pi)-\cos^3 (0)=4\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.