Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 16: Integrals and Vector Fields - Section 16.6 - Surface Integrals - Exercises 16.6 - Page 1000: 16

Answer

$\dfrac{ 3 \sqrt 6- \sqrt 2}{3}$

Work Step by Step

The surface integral can be found as: $dS= \sqrt {(f_x)^2 +(f_y)^2 +1} \ dy \ dx=\sqrt {(2x)^2 +(1)^2 +1} \ dy \ dx =\sqrt {(4x^2+2)} \ dy \ dx $ We set up the integral and solve the surface integral as follows: $\iint_{S} G (x,y,z) \ dS=\int_0^1 \int_{-1}^{1} x \sqrt {(4x^2+2)} \ dy \ dx$ or, $=\int_0^1 x \sqrt {(4x^2+2)} [y]_{-1}^1 \ dx$ or, $= \int_0^1 x(4x^2 +2)^{1/2} \ dx$ or, $=2 \times \dfrac{1}{8} \times \dfrac{2}{3} [(4x^2+2)^{3/2}]_0^1$ or, $= \dfrac{6 \sqrt 6-2 \sqrt 2}{6}$ or, $= \dfrac{ 3 \sqrt 6- \sqrt 2}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.