Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.7 - Triple Integrals in Cylindrical and Spherical Coordinates - Exercises 15.7 - Page 921: 71

Answer

$$ \bar{z}=\frac{M_{x y}}{M}=\frac{5}{6},,\ \bar{x}=\bar{y}=0,$$

Work Step by Step

Since \begin{align*} M&=\int_{0}^{2 \pi} \int_{0}^{4} \int_{0}^{\sqrt{r}} d z r d r d \theta\\ &=\int_{0}^{2 \pi} \int_{0}^{4} r^{3 / 2} d r d \theta\\ &=\frac{64}{5} \int_{0}^{2 \pi} d \theta=\frac{128 \pi}{5}\\ M_{x y}&=\int_{0}^{2 \pi} \int_{0}^{4} \int_{0}^{\sqrt{r}}d z r d r d \theta\\ & =\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{4} r^{2} d r d \theta\\ &=\frac{32}{3} \int_{0}^{2 \pi} d \theta\\ &=\frac{64 \pi}{3} \end{align*} Then by symmetry $$ \bar{z}=\frac{M_{x y}}{M}=\frac{5}{6},,\ \bar{x}=\bar{y}=0,$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.