Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.5 - Triple Integrals in Rectangular Coordinates - Exercises 15.5 - Page 903: 51

Answer

$(2-\sqrt 2)\pi$

Work Step by Step

The region of integration in cylindrical coordinates can be expressed as: $R=${$ (r,\theta, z) | r \lt z \leq 1, 0 \leq r \leq 1, 0 \leq \theta \leq 2 \pi$} The function we want to integrate can be integrated in triple cylindrical coordinates as: $ \iint_{R} \dfrac{z}{(x^2+y^2+z^2)^{3/2}} \ dV=\int^{0}_{2 \pi} \int_{0}^{1} \int_{r}^1 \dfrac{zr}{(r^2+z^2)^{3/2}} ( dz dr d \theta) $ We need to use a calculator to compute the triple integral. $\int^{0}_{2 \pi} \int_{0}^{1} \int_{r}^1 \dfrac{zr}{(r^2+z^2)^{3/2}} ( dz dr d \theta) =(2-\sqrt 2)\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.