Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 15: Multiple Integrals - Section 15.5 - Triple Integrals in Rectangular Coordinates - Exercises 15.5 - Page 900: 4

Answer

$3\pi$

Work Step by Step

The six different iterated triple integrals for the volume $V$ are defined as: 1. $V=\int_{0}^{3} \int_{0}^{2} \int_{0}^{\sqrt {4-x^2}} \ dz \ dx \ dy$ 2. $V= \int_{0}^{3} \int_{0}^{2} \int_{0}^{\sqrt {4-x^2}} \ dx \ dz \ dy$ 3. $V= \int_{0}^{2} \int_{0}^{3} \int_{0}^{\sqrt {4-x^2}} \ dx \ dy \ dz$ 4. $V= \int_{0}^{2} \int_{0}^{3} \int_{0}^{\sqrt {4-x^2}} \ dz \ dy \ dx$ 5. $V= \int_{0}^{1} \int_{0}^{\sqrt {4-x^2}} \int_{0}^{3} \ dy \ dz \ dx$ 6. $V= \int_{0}^{2} \int_{0}^{\sqrt {4-x^2}} \int_{0}^{3} \ dy \ dx \ dz$ We will solve one triple integral among the six different iterated triple integrals for the volume $V$. $V=\int_{0}^{3} \int_{0}^{2} \int_{0}^{\sqrt {4-x^2}} \ dz \ dx \ dy \\=\int_{0}^{3} \int_{0}^{2} [z]_{0}^{\sqrt {4-x^2}} \ dx \ dy \\=\int_{0}^{3} \int_0^2 \sqrt {4-x^2} dxdy$ Let us consider that $x =2 \sin a $ and $dx=2 \cos a da$ $V=\int_0^{3} \int_0^{\pi/2} (2 \cos a) \sqrt {4-(2 \sin a)^2} da dy \\=\int_0^{3} \int_0^{\pi/2} (2 \cos a) \sqrt {4-4 \sin^2 (a)} da dy \\=4 \int_0^3 [\dfrac{a}{2}+\dfrac{\sin (2a)}{4}]_0^{\pi/2} \ dy\\=4 \int_0^{3} \dfrac{\pi}{4} \ dy \\=4 \int_0^3 [0+\dfrac{\pi/2}{2}] \ dy \\=4 \int_0^{3} \dfrac{\pi}{4} \ dy \\=[\pi y ]_0^3 \\=\pi (3-0) \\=3\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.