Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.8 - Lagrange Multipliers - Exercises 14.8 - Page 854: 41

Answer

max val = 1 + 6$\sqrt3$ min val = 1 - 6$\sqrt3$

Work Step by Step

f(x,y,z) = x$^{2}$yz + 1 g1(x,y,z) = z - 1 g2(x,y,z) = x$^{2}$ + y$^{2}$ + z$^{2}$ - 10 ∇f = 2xyzi + x$^{2}$zj + x$^{2}$yz ∇g1 = k ∇g2 = 2xi + 2yi + 2zK ∇f = λ∇g1 + µ∇g2 2xyzi + x$^{2}$zj + x$^{2}$yk = λ(k) + µ(2xi + 2yj + 2zk) 2xyz = µ2x , x$^{2}$z = 2yµ , x$^{2}$y = λ + 2zµ xyz = xµ case 1 : x = 0 or z = 1 in g(1) 0$^{2}$ + y$^{2}$ + 1$^{2}$ - 10 = 0 y$^{2}$ = 9 y = ±3 (0,±3,1) case 2 : y = µ and z = 1 x$^{2}$ = 2$y^{2}$ in g(1) 2y$^{2}$ + y$^{2}$ + 1$^{2}$ -10 = 0 3y$^{2}$ = 9 y = ±$\sqrt3$ x$^{2}$ = 2(±$\sqrt3$)$^{2}$ x = ±$\sqrt6$ (±$\sqrt6$,±$\sqrt3$,1) f(0,±3,1) = 1 f(±$\sqrt6$,±$\sqrt3$,1) = 6(±$\sqrt3$) + 1 = 1 ± 6$\sqrt3$ max val = 1 + 6$\sqrt3$ min val = 1 - 6$\sqrt3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.