Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.6 - Tangent Planes and Differentials - Exercises 14.6 - Page 835: 48

Answer

$$0.000636$$

Work Step by Step

$f_x(0,0,\dfrac{\pi}{4})$ $=-\sqrt 2 \sin x \sin (y+z)$ $ =-\sqrt 2 \sin (0) \sin (0+(\pi/4))=0$ $f_y(0,0,\dfrac{\pi}{4})$ $=\sqrt 2 \cos x \cos (y+z)$ $=-\sqrt 2 \sin (0) \sin (0+(\pi/4))$ $=0$ $f_z(1,1,0)$ $=2y-3x=2(1)-3(1)$ $=-1$ Error: $|E(x,y,z)| \leq \dfrac{1}{2} (\sqrt 2) [ |x-0| +|y-0|+|z-\dfrac{\pi}{4}|)^2$ or, $$ E \leq \dfrac{\sqrt 2}{2} (0.01+0.01+0.01)^2 =0.000636$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.