Answer
$x=1-2t; y=1; z=\dfrac{1}{2}+2t$
Work Step by Step
The vector equation is given by: $r(x,y,z)=r_0+t \nabla f(r_0)$
Given: $f(x,y,z)=x^2+2y+2z-4=0$
The equation of tangent line for $v=-2 i +2k$ or, $v=\lt -2,0,2 \gt$
Now, we have the parametric equations for $\nabla f(1,1,\dfrac{1}{2})=\lt -2,0,2 \gt$ as follows:
$x=1-2t; y=1+0t=1; z=\dfrac{1}{2}+2t$
Thus, $x=1-2t; y=1; z=\dfrac{1}{2}+2t$