Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 14: Partial Derivatives - Section 14.3 - Partial Derivatives - Exercises 14.3 - Page 808: 60

Answer

$1$ and $0$

Work Step by Step

We know that $f_x(x_0,y_0)=\lim\limits_{h \to 0} \dfrac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$ $f_x(0,0)=\lim\limits_{h \to 0} \dfrac{f(0+h,0)-f(0,0)}{h}=\lim\limits_{h \to 0} \dfrac{\frac{\sin (h^3+0^4)}{h^2+0^2}}{h}=1$ Also, $f_y(x_0,y_0)=\lim\limits_{h \to 0} \dfrac{f(x_0,y_0+h)-f(x_0,y_0)}{h}$ Now, $f_y(0,0)=\lim\limits_{h \to 0} \dfrac{f(0,0+h)-f(0,0)}{h}=\lim\limits_{h \to 0} \dfrac{\frac{\sin (0^3+h^4)}{0^2+h^2}}{h}=\lim\limits_{h \to 0} \dfrac{\sin h^4}{h^4 } \lim\limits_{h \to 0} (h) =1 \times 0=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.