Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 13: Vector-Valued Functions and Motion in Space - Section 13.2 - Integrals of Vector Functions; Projectile Motion - Exercises 13.2 - Page 754: 34

Answer

$v_0 \approx 46.6 ft/second$

Work Step by Step

Since, $y=-\dfrac{g}{2v_{0}^2\cos^2 \alpha }x^2+\tan \alpha x$ Now, when $y_0 \ne 0$, then we consider $y-y_0=-\dfrac{g}{2v_{0}^2\cos^2 \alpha }x^2+\tan \alpha x$ Now plug in the data: $0-6.5 =-\dfrac{g}{2v_{0}^2\cos^2 40^{\circ} } \times (73 \ ft 10 \ in )^2+\tan 40^{\circ} \times (73 \ ft 10 \ in )^2$ Since,$1 \ ft =1 \ in ; g= 32 ft/sec^2$ Now $-6.5 =\dfrac{-32}{2v_{0}^2\cos^2 40^{\circ} } \times (73.833)^2+\tan 40^{\circ} \times (73.833)$ $\implies -6.5 \approx \dfrac{-148633.6}{v_{0^2}}+61.95$ $\implies v_0 \approx \sqrt {\dfrac{148633.6}{68.45}}$ Thus, $v_0 \approx 46.6 ft/second$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.