Answer
$$ 55.4 \mathrm{ft}$$
Work Step by Step
Since
$$y=y_{0}+\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}$$
Then $$ y=32+16 t-16 t^{2}$$
The ball hits the ground when $y=0 $
$$\Rightarrow 0=32+16 t-16 t^{2} $$ Hence $ t=-1$ or $t=2 t=2 \sec$
since $t>0 ;$ thus,\begin{align*}
x&=\left(v_{0} \cos \alpha\right) t\\
x&=(32 \mathrm{ft} / \mathrm{sec})\left(\cos 30^{\circ}\right) t\\
&=32\left(\frac{\sqrt{3}}{2}\right)(2) \approx 55.4 \mathrm{ft}
\end{align*}