Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 12: Vectors and the Geometry of Space - Section 12.4 - The Cross Product - Exercises 12.4 - Page 719: 46

Answer

$\displaystyle \frac{3\sqrt{2}}{2}$

Work Step by Step

$ \overrightarrow{AB} = \langle-1-0, 1-0,-1-0 \rangle= \langle-1, 1, -1 \rangle$ $ \overrightarrow{AC} = \langle 3, 0, 3 \rangle$ We find the area of the parallelogram defined by these two vectors. The triangle has half the area of the parallelogram. $A=\displaystyle \frac{1}{2}| \overrightarrow{AB} \times \overrightarrow{AC} |$ $ \overrightarrow{AB} \times \overrightarrow{AC}=\left|\begin{array}{lll} {\bf i} & {\bf j} & {\bf k}\\ -1 & 1 & -1\\ 3 & 0 & 3 \end{array}\right|=\langle (3-0) ,\ -(-3+3) ,\ (0-3) \rangle$ $=\langle 3 ,\ 0 ,\ -3 \rangle$ $A=\displaystyle \frac{1}{2}\cdot\sqrt{9+0+9}=\frac{3\sqrt{2}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.