Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 12: Vectors and the Geometry of Space - Questions to Guide Your Review - Page 733: 10

Answer

See the explanation

Work Step by Step

The determinant formula for calculating the cross product of two vectors in the Cartesian coordinate system is as follows: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix} \] where \(\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j} + A_z \mathbf{k}\) and \(\mathbf{B} = B_x \mathbf{i} + B_y \mathbf{j} + B_z \mathbf{k}\) are the given vectors. To illustrate this formula, let's consider the following example: \(\mathbf{A} = 2\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}\) and \(\mathbf{B} = -1\mathbf{i} + 5\mathbf{j} + 2\mathbf{k}\). Using the determinant formula, we can calculate the cross product as follows: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 4 \\ -1 & 5 & 2 \end{vmatrix} \] Expanding the determinant, we have: \[ \mathbf{A} \times \mathbf{B} = ( -3 \cdot 2 - 5 \cdot 4 )\mathbf{i} - ( 2 \cdot 2 - 5 \cdot -1 )\mathbf{j} + ( 2 \cdot 4 - ( -3 \cdot -1 ))\mathbf{k} \] Simplifying further, we get: \[ \mathbf{A} \times \mathbf{B} = -22\mathbf{i} - 9\mathbf{j} + 5\mathbf{k} \] Therefore, the cross product of vectors \(\mathbf{A}\) and \(\mathbf{B}\) is \(-22\mathbf{i} - 9\mathbf{j} + 5\mathbf{k}\).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.