Answer
$r=\dfrac{4}{1-\cos \theta}$
Work Step by Step
The polar equation of a conic with eccentricity $e$ and directrix $x=-k$ is written as:
$r=\dfrac{ke}{1-e \cos \theta}$
Here, we have $e=1,k=4$
Thus $x=-k=-4$
Then
$r=\dfrac{ke}{1-e \cos \theta}=\dfrac{4}{1-\cos \theta}$