Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 635: 73

Answer

(a)=$e^{i(θ1+θ2)}$ (b)=$\frac{1}{(cos(θ)+isin(θ))}$=$\frac{1}{e^{iθ}}$

Work Step by Step

(a) $e^{iθ1}$$\times$$e^{iθ2}$=($cosθ1 + isinθ1 $)($cosθ2 + isinθ2 $) =($cosθ1\times cosθ2-sinθ1\times sinθ2$)+$i$($sinθ1\times cosθ2-sinθ2\times cosθ1$) =$cos(θ1+θ2)+isin(θ1+θ2)$ =$e^{i(θ1+θ2)}$ (b) $e^{-iθ}$ = $cos(-θ)+isin(-θ)$ =$cos(θ)-isin(θ)$=($cos(θ)-isin(θ)$)=$\frac{(cos(θ)+isin(θ))}{(cos(θ)+isin(θ))}$ x ($cos(θ)-isin(θ)$) =$\frac{1}{(cos(θ)+isin(θ))}$=$\frac{1}{e^{iθ}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.