Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.10 - The Binomial Series and Applications of Taylor Series - Exercises 10.10 - Page 634: 69

Answer

1$-$ $(θ)^2$$/2!$ + $(θ)^4$$/4!$ $-$ $(θ)^6$$/6!$ +... =$cosθ$ θ$-$ $(θ)^3$$/3!$ + $(θ)^5$$/5!$ $-$ $(θ)^7$$/7!$ +... =$sinθ$

Work Step by Step

Using formulas of taylor series $e^x$=1+ $x$+ $x^2$$/2!$ + $x^3$$/3!$ + $x^4$$/4!$ +... $e^{iθ}$=1+ $iθ$+ $(iθ)^2$$/2!$ + $(iθ)^3$$/3!$ + $(iθ)^4$$/4!$ +... and $e^{-iθ}$=1+ $-iθ$+ $(-iθ)^2$$/2!$ + $(-iθ)^3$$/3!$ + $(-iθ)^4$$/4!$ +... =1 $-$ $iθ$+ $(iθ)^2$$/2!$ $-$ $(iθ)^3$$/3!$ + $(iθ)^4$$/4!$ $-$... now combing the formulas $\frac{e^{iθ}+e^{-iθ}}{2}$ =$\frac{(1+ iθ+ (iθ)^2/2! + (iθ)^3/3!+ (iθ)^4/4! +...) + ( 1- iθ+ (iθ)^2/2! -(iθ)^3/3!+ (iθ)^4/4! -... )}{2}$ =1$-$ $(θ)^2$$/2!$ + $(θ)^4$$/4!$ $-$ $(θ)^6$$/6!$ +... =$cosθ$ now for $sinθ$ $\frac{e^{iθ}-e^{-iθ}}{2!}$ =$\frac{(1+ iθ+ (iθ)^2/2! + (iθ)^3/3!+ (iθ)^4/4! +...) - ( 1- iθ+ (iθ)^2/2! -(iθ)^3/3!+ (iθ)^4/4! -... )}{2!}$ =θ$-$ $(θ)^3$$/3!$ + $(θ)^5$$/5!$ $-$ $(θ)^7$$/7!$ +... =$sinθ$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.