Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.2 - Mathematical Induction - Exercises A.2 - Page AP-9: 9

Answer

See the proof below.

Work Step by Step

In order to show that the formula holds we must show that it is true for $n=1$ and that if its is true for $n=k$ then, it is true for $n=k+1$. $\textbf{1.}$ The formula holds for $n=1$ since $$1=\displaystyle\frac{1\left(1+\displaystyle\frac{1}{2}\right)\left(1+1\right)}{3}.$$ $\textbf{2.}$ Suppose the formula holds for $n=k$, that is, suppose that $$1^2+2^2+\ldots+k^2=\displaystyle\frac{k\left(k+\displaystyle\frac{1}{2}\right)\left(k+1\right)}{3}.$$ Then, by adding $\left(k+1\right)^2$ to both sides of the previous equation we obtain that $$1^2+2^2+\ldots+k^2+\left(k+1\right)^2=\displaystyle\frac{k\left(k+\displaystyle\frac{1}{2}\right)\left(k+1\right)}{3}+\left(k+1\right)^2.$$ Now, observe that $$\displaystyle\frac{k\left(k+\displaystyle\frac{1}{2}\right)\left(k+1\right)}{3}+\left(k+1\right)^2=$$ $$\displaystyle\frac{k\left(k+\displaystyle\frac{1}{2}\right)}{3}\left(k+1\right)+\left(k+1\right)\left(k+1\right)=$$ $$\left[\displaystyle\frac{k\left(k+\displaystyle\frac{1}{2}\right)}{3}+\left(k+1\right)\right]\left(k+1\right)=$$ $$\left[\displaystyle\frac{k\left(k+\displaystyle\frac{1}{2}\right)+\left(3k+3\right)}{3}\right]\left(k+1\right)=$$ $$\left[\displaystyle\frac{k^2+\displaystyle\frac{k}{2}+3k+3}{3}\right]\left(k+1\right)=\left[\displaystyle\frac{k^2+\displaystyle\frac{7k}{2}+3}{3}\right]\left(k+1\right)=$$ $$\left[\displaystyle\frac{\left(k+\displaystyle\frac{3}{2}\right)\left(k+2\right)}{3}\right]\left(k+1\right)=\displaystyle\frac{\left(k+1\right)\left(k+\displaystyle\frac{3}{2}\right)\left(k+2\right)}{3}=$$ $$\displaystyle\frac{\left(k+1\right)\left(\left(k+1\right)+\displaystyle\frac{1}{2}\right)\left(\left(k+1\right)+1\right)}{3}.$$ Thus, $$1^2+2^2+\ldots+k^2+\left(k+1\right)^2=\displaystyle\frac{\left(k+1\right)\left(\left(k+1\right)+\displaystyle\frac{1}{2}\right)\left(\left(k+1\right)+1\right)}{3}$$ and therefore, the formula holds for $n=k+1$ whenever it is true for $n=k$. Hence, the mathematical induction principle guarantees that the formula is true for every positive integer $n$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.