Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 1 - Section 1.3 - Linear Functions and Models - Exercises - Page 91: 78

Answer

$y=\displaystyle \frac{s-q}{r-p}x+\frac{qr-ps}{r-p}$

Work Step by Step

Target: $y=mx+b,$ (find m and b). Given $(x_{1},y_{1})=(p,q)$ and $(x_{2},y_{2})=(r,s)$ on a line, calculate the slope : $m=\displaystyle \frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ $=\displaystyle \frac{s-q}{r-p} \qquad...(r\neq p)$ So, the form of our linear equation is $y=\displaystyle \frac{s-q}{r-p}x+b$ To find b, substitute the coordinates of one of the given points and solve for b. $q=\displaystyle \frac{s-q}{r-p}(p)+b\qquad /-\frac{p(s-q)}{r-p}$ $q-\displaystyle \frac{p(s-q)}{r-p}=b$ $b=\displaystyle \frac{q(r-p)-p(s-q)}{r-p}=\frac{qr-qp-ps+pq}{r-p}=\frac{qr-ps}{r-p}$ Thus, $y=\displaystyle \frac{s-q}{r-p}x+\frac{qr-ps}{r-p}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.