Answer
$FC=(SP-VC)BE$
(FC=total fixed cost)
Work Step by Step
Cost $=$ Variable cost $+$ Fixed cost
$C(x)=mx+b$ is called a linear cost function
the variable cost is $mx$ and the fixed cost is $b$.
If $R(x)$ is the revenue from selling $x$ items at a price of m each, then
$R$ is the linear function $R(x)=mx$ .
Profit $=$ Revenue-Cost,$\qquad P(x)=R(x)-C(x)$
Breakeven occurs when $P=0$, or $R(x)=C(x)$.
-------------------
Let FC = total fixed cost.
For the cost function,
$C(x)=VC\cdot x+FC$
The revenue: $R(x)=SP\cdot x$
Breakeven: $R(x)=C(x)$, solve for FC
$(x=BE)$
$SP\cdot BE=VC\cdot BE+FC\qquad /-VC\cdot BE$
$SP\cdot BE-VC\cdot BE=FC$
$FC=(SP-VC)BE$