Answer
(a) When we use the zoom function on a graphing calculator, we could estimate that:
$\lim\limits_{x \to \infty}f(x) = 0.47$
$\lim\limits_{x \to -\infty}f(x) = -0.47$
(b) We could estimate that:
$\lim\limits_{x \to \infty}f(x) = 0.4714$
$\lim\limits_{x \to -\infty}f(x) = -0.4714$
(c) $\lim\limits_{x \to \infty}\frac{\sqrt{2x^2+1}}{3x-5}=\frac{\sqrt{2}}{3}$
$\lim\limits_{x \to -\infty}\frac{\sqrt{2x^2+1}}{3x-5} = -\frac{\sqrt{2}}{3}$
Work Step by Step
(a) $f(x) = \frac{\sqrt{2x^2+1}}{3x-5}$
On the graph, we can see two horizontal asymptotes.
When we use the zoom function on a graphing calculator, we could estimate that:
$\lim\limits_{x \to \infty}f(x) = 0.47$
$\lim\limits_{x \to -\infty}f(x) = -0.47$
(b) We can evaluate $f(x)$ for increasing values of $x$:
$f(10) = \frac{\sqrt{2(10)^2+1}}{3(10)-5} = 0.5671$
$f(100) = \frac{\sqrt{2(100)^2+1}}{3(100)-5} = 0.4794$
$f(1000) = \frac{\sqrt{2(1000)^2+1}}{3(1000)-5} = 0.4722$
$f(10,000) = \frac{\sqrt{2(10,000)^2+1}}{3(10,000)-5} = 0.4715$
$f(100,000) = \frac{\sqrt{2(100,000)^2+1}}{3(100,000)-5} = 0.4714$
$f(1,000,000) = \frac{\sqrt{2(1,000,000)^2+1}}{3(1,000,000)-5} = 0.4714$
We could estimate that:
$\lim\limits_{x \to \infty}f(x) = 0.4714$
We can evaluate $f(x)$ for decreasing values of $x$:
$f(-10) = \frac{\sqrt{2(-10)^2+1}}{3(-10)-5} = -0.4051$
$f(-100) = \frac{\sqrt{2(-100)^2+1}}{3(-100)-5} = -0.4637$
$f(-1000) = \frac{\sqrt{2(-1000)^2+1}}{3(-1000)-5} = -0.4706$
$f(-10,000) = \frac{\sqrt{2(-10,000)^2+1}}{3(-10,000)-5} = -0.4713$
$f(-100,000) = \frac{\sqrt{2(-100,000)^2+1}}{3(-100,000)-5} = -0.4714$
$f(-1,000,000) = \frac{\sqrt{2(-1,000,000)^2+1}}{3(-1,000,000)-5} = -0.4714$
We could estimate that:
$\lim\limits_{x \to -\infty}f(x) = -0.4714$
(c) We can calculate $\lim\limits_{x \to \infty}f(x)$:
$\lim\limits_{x \to \infty}\frac{\sqrt{2x^2+1}}{3x-5}$
$=\lim\limits_{x \to \infty}\frac{(\sqrt{2x^2+1})(\frac{1}{x})}{(3x-5)(\frac{1}{x})}$
$=\lim\limits_{x \to \infty}\frac{\sqrt{2x^2/x^2+1/x^2}}{3x/x-5/x}$
$=\lim\limits_{x \to \infty}\frac{\sqrt{2+1/x^2}}{3-5/x}$
$=\frac{\sqrt{2+0}}{3-0}$
$=\frac{\sqrt{2}}{3}$
We can calculate $\lim\limits_{x \to -\infty}f(x)$:
$\lim\limits_{x \to -\infty}\frac{\sqrt{2x^2+1}}{3x-5}$
$=\lim\limits_{x \to -\infty}\frac{(\sqrt{2x^2+1})(\frac{1}{x})}{(3x-5)(\frac{1}{x})}$
$=\lim\limits_{x \to -\infty}\frac{-\sqrt{2x^2/x^2+1/x^2}}{3x/x-5/x}$
$=\lim\limits_{x \to -\infty}\frac{-\sqrt{2+1/x^2}}{3-5/x}$
$=\frac{-\sqrt{2+0}}{3-0}$
$=-\frac{\sqrt{2}}{3}$