Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.5 - Continuity - 2.5 Exercises - Page 126: 63

Answer

$f$ is continuous at $a$ if and only if $\lim\limits_{h \to 0}f(a+h) = f(a)$

Work Step by Step

Let's assume that $f$ is continuous at $a$ Then $\lim\limits_{x \to a}f(x) = f(a)$ Choose any $\epsilon \gt 0$ There is a positive number $\delta$ such that if $0 \lt \vert x-a \vert \lt \delta$ then $\vert f(x) -f(a) \vert \lt \epsilon$ If $0 \lt \vert h-0 \vert \lt \delta$ then $0 \lt \vert (a+h)-a \vert \lt \delta$ and $\vert f(a+h) -f(a) \vert \lt \epsilon$ Then $\lim\limits_{h \to 0}f(a+h) = f(a)$ Now let's assume that $\lim\limits_{h \to 0}f(a+h) = f(a)$ Choose any $\epsilon \gt 0$ There is a positive number $\delta$ such that if $0 \lt \vert h-0 \vert \lt \delta$ then $\vert f(a+h) -f(a) \vert \lt \epsilon$ If $0 \lt \vert x-a \vert \lt \delta$ then $\vert f(a+x-a) -f(a) \vert = \vert f(x) -f(a) \vert \lt \epsilon$ Then $\lim\limits_{x \to a}f(x) = f(a)$ and $f$ is continuous at $a$ Therefore: $f$ is continuous at $a$ if and only if $\lim\limits_{h \to 0}f(a+h) = f(a)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.