Answer
Since $~~\lim\limits_{x \to 0}f(x) \neq f(0)$, the function is not continuous at $x = 0$
Work Step by Step
$f(0) = 0$
$\lim\limits_{x \to 0^-}f(x) = cos(0)= 1$
$\lim\limits_{x \to 0^+}f(x) = 1-(0)^2= 1$
$\lim\limits_{x \to 0}f(x) = 1$
Note that $\lim\limits_{x \to 0}f(x) \neq f(0)$
Since $~~\lim\limits_{x \to 0}f(x) \neq f(0)$, the function is not continuous at $x = 0$