Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.4 - The Precise Definition of a Limit - 2.4 Exercises - Page 113: 7

Answer

When $\epsilon = 0.2,~~~$ let $~~~\delta = 0.02$ When $\epsilon = 0.1,~~~$ let $~~~\delta = 0.01$

Work Step by Step

$f(x) = x^3-3x+4$ Let $\epsilon = 0.2$ $f(1.98) = (1.98)^3-3(1.98)+4 = 5.82$ $f(2.02) = (2.02)^3-3(2.02)+4 = 6.18$ Let $\delta = 0.02$ Then: If $0 \lt \vert x-2 \vert \lt \delta,~~$ then $~~0 \lt \vert f(x)-6 \vert \lt \epsilon$ Let $\epsilon = 0.1$ $f(1.99) = (1.99)^3-3(1.99)+4 = 5.91$ $f(2.01) = (2.01)^3-3(2.01)+4 = 6.09$ Let $\delta = 0.01$ Then: If $0 \lt \vert x-2 \vert \lt \delta,~~$ then $~~0 \lt \vert f(x)-6 \vert \lt \epsilon$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.